
Type inference for monotonicity
Michael Arntzenius
University of Birmingham

Problem: Ensuring functions aremonotone

Monotonicity crops up in interesting places:

1. In the query languages Datalog and Datafun [3], monotonicity is needed to ensure
recursive queries terminate.

2. In abstract interpretation, static analyses are phrased as monotonemaps on lattices.
3. For ensuring eventual consistency in distributed systems [2] and determinism in

concurrent systems [4].

In all these contexts, it's useful to be able to guarantee a function is monotone. So: how
canwe ensuremonotonicity using types?

Modes of (non-)monotonicity

I consider fourmodes, ways a function may respect the order on its domain:

id is monotone, or order-preserving. For example, λx. x.
op is antitone, or order-inverting. For example, not : bool→ bool.
� is equivariant, preserving only equivalence. Usually, all functions are equivariant.
♦ is bivariant, or both mono- and antitone. For example, λx. 42.

Modes as preorder transformations

Formally, modes alter preorderings (reflexive, transitive relations), as shown in Figures 1
and 2. We say f : A→ B has mode T iff f is monotone from TA→ B.

Modes are ordered by what they do to preorders: T 6 U iff x 6 y : TA =⇒ x 6 y : UA.
Modes can also be composed: If f : A→ B has mode T and g : B→ C has modeU, then
g ◦ f has modeUT .

Variables get usagemodes, too

Besides types, we also care about the mode at which a variable is used. To simplify our
examples, we consider only single-variable contexts. The typing judgment is then:

x : [T ]A `M : B

Approach 1: Annotate the arrows

Annotating function types with their mode is the obvious approach, used in Datafun [3]
and variance typing [1]:

setMap : (A
�→ B)

�→ SetA id→ Set B
setMap f xs = do x← xs

return (f x)

But it cannot capture more complex input-output ordering relationships:

subtractEach : List (N× N) ???→ ListN
subtractEach xs = map (λ(x,y). x− y) xs

A mode on the arrow cannot indicate this function ismonotone in the first half of each
(N× N) pair, but antitone in the second.

Approach 2: Modal types

Let (opA) be A with its ordering inverted. Antitonemaps (A op→ B) are justmonotone
maps (opA → B). Instead of annotating arrows, we can make all functions monotone,
and apply modes directly to types! Now subtractEach has a precise type:

subtractEach : List (N× opN)→ ListN

A key feature of modal type systems [5] is that the intro and elim rules for modal types
manipulate themodes in the typing context:

x : [T ]A `M : B

x : [�T ] ` boxM : �B

x : [T ]A `M : �B y : [�]B ` N : C

x : [T ]A ` let box y = M inN : C

However, needing to explicitly introduce and eliminate modal types clutters up func-
tions like setMap:

setMap : �(�A→ B)→ SetA→ Set B
setMap f xs =

let box g = f in
do x← xs

let boxy = x

return (box (g (boxy)))

a 6 b : idA ⇐⇒ a 6 b : A
a 6 b : opA ⇐⇒ a > b : A
a 6 b : �A ⇐⇒ a 6 b∧ a > b : A
a 6 b : ♦A ⇐= a 6 b∨ b 6 a : A

♦

�

id op

UT
T

id op � ♦

U

id id op � ♦
op op id � ♦
� � � � ♦
♦ ♦ ♦ � ♦

Figure 1: Modes, the mode lattice, andmode composition

a

b

c
m n

A = idA

a

b

c
m n

opA

a

b

c
m n

�A

a

b

c
m n

♦A

Figure 2: Applying various modes to a preorder

Our approach: Modal subtyping!

Goal: Handle functions which are monotone in only part of their input without clunky
term annotations:

subtractEach : List (N× opN)→ ListN
subtractEach xs = map (λ(x,y). x− y) xs

setMap : �(�A→ B)→ SetA→ Set B
setMap f xs = do x← xs; return (f x)

Method: Construct and eliminate modal types implicitly via subtyping. Since types are
preorders, subtyping means subpreordering:

A <: B iffA ⊆ B and x 6 y : A =⇒ x 6 y : B

For example,�A <: A, because x 6 y∧ y 6 x : A =⇒ x 6 y : A. This lets subtyping
eliminate�A. But, how can it introduce�? To do that, just like our intro and elim rules,
wemust let subtyping alter themodes in the typing context.

Modal subtyping alters the context

We generalize our subtyping judgment to [T ]A <: B, giving the greatest tone T such that
TA <: B.

SUBSUMPTION
x : [T ]A `M : B [U]B <: C

x : [UT ]A `M : C

�-INJECTION
[T ]A <: B

[�T ]A <: �B

�-EXTRACTION
[T ]A <: B

[T♦]�A <: B

Example typing and subtyping rules

I now drop the pretense that contexts have only one variable.

T(xi : [Ui]Ai)i = (xi : [TUi]Ai)i
x : [T ]A ∈ Γ T 6 id

Γ ` x : A

Γ ,y : [U]B `M : C id 6 U

Γ ` λy.M : B→ C

Γ1 `M : A [T ]A <: B→ C Γ2 ` N : B

TΓ1 ∧ Γ2 `MN : C

Γ1 `M : A Γ2, x : [T ]A ` N : B

TΓ1 ∧ Γ2 ` let x = M inN : B

[id]A <: A
[T ]A <: B

[UT ]A <: UB

[T ]A <: B U a V

[TU]VA <: B

U ∈ {id, op,♦} U 6 T [T ]A2 <: A1 [U]B1 <: B2

[U](A1→ B1) <: A2→ B2

[♦]A2 <: A1 [�]B1 <: B2

[�](A1→ B1) <: A2→ B2

References

[1] Andreas Abel.
Polarized subtyping for sized types.
In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First
International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Proceedings, volume
3967 of Lecture Notes in Computer Science, pages 381--392. Springer, 2006.

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.
Consistency analysis in Bloom: a CALM and collected approach.
In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249--260, 2011.

[3] Michael Arntzenius and Neelakantan R. Krishnaswami.
Datafun: A functional Datalog.
In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, pages 214--227,
New York, NY, USA, 2016. ACM.

[4] Lindsey Kuper and Ryan R. Newton.
LVars: lattice-based data structures for deterministic parallelism.
In Clemens Grelck, Fritz Henglein, Umut A. Acar, and Jost Berthold, editors, Proceedings of the 2nd ACM SIGPLAN workshop
on Functional high-performance computing, Boston, MA, USA, FHPC@ICFP 2013, September 25-27, 2013, pages 71--84. ACM,
2013.

[5] Frank Pfenning and Rowan Davies.
A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511--540, 2001.


