Type inference for monotonicity

Michael Arntzenius

University of Birmingham

Problem: Ensuring functions are monotone

Monotonicity crops up in interesting places:

1. Inthe query languages Datalog and Datafun [3], monotonicity is needed to ensure
recursive queries terminate.

2. In abstract interpretation, static analyses are phrased as monotone maps on lattices.

3. For ensuring eventual consistency in distributed systems [2] and determinism in
concurrent systems [4].

In all these contexts, it's useful to be able to guarantee a function is monotone. So: how
can we ensure monotonicity using types?

Modes of (non-)monotonicity

| consider four modes, ways a function may respect the order on its domain:

= id is monotone, or order-preserving. For example, Ax. x.
= op is antitone, or order-inverting. For example, not : bool — bool.

= []is equivariant, preserving only equivalence. Usually, all functions are equivariant.
= () is bivariant, or both mono- and antitone. For example, Ax. 42,

Modes as preorder transformations

Formally, modes alter preorderings (reflexive, transitive relations), as shown in Figures 1
and 2. Wesay f: A — B hasmode T iff f is monotone from TA — B.

Modes are ordered by what they do to preorders: T < Uiff x <y: TA = x <y : UA.
Modes can also be composed: If f : A — B hasmode T and g : B — C has mode U, then
g o f has mode UT.

Variables get usage modes, too

Besides types, we also care about the mode at which a variable is used. To simplify our
examples, we consider only single-variable contexts. The typing judgment is then:

x:[TJAFM:B

Approach 1: Annotate the arrows

Annotating function types with their mode is the obvious approach, used in Datafun [3]
and variance typing [1]:

setMap : (A = B) S SetA S setB
setMap f xs = dox < xs
return (f x)

But it cannot capture more complex input-output ordering relationships:

222

subtractEach : List (N x N) — List N
subtractEach xs = map (A(x,Y).x —y) xs

A mode on the arrow cannot indicate this function is monotone in the first half of each
(N x N) pair, but antitone in the second.

Approach 2: Modal types

Let (op A) be A with its ordering inverted. Antitone maps (A = B) are just monotone
maps (op A — B). Instead of annotating arrows, we can make all functions monotone,
and apply modes directly to types! Now subtractEach has a precise type:

subtractBEach : List (N x opN) — List N

A key feature of modal type systems [5] is that the intro and elim rules for modal types
manipulate the modes in the typing context:

x:[TIAFM:B
x : |[LJT] = box M : [IB

x:[TIAFM:[IB y:[JBFN:C
x : [TIAF letboxy =MinN: C

However, needing to explicitly introduce and eliminate modal types clutters up func-
tions like setMap:

setMap : [J(LJA — B) — Set A — SetB

setMap f xs =
let box g = fin
dox < xs
let boxy = x

return (box (g (boxy)))

T
a<b:idA <«— a<b:A O ur id op L1 O
a<b:opA <— a>b:A | VRN id id op L1 O
a<b:[JA «— a<bAa=b:A id op uopopic O
a<b:0A <«—= ag<bVb<a:A N S O
VIEOERVE N RY:
Figure 1: Modes, the mode lattice, and mode composition
A=IidA opA A OA
b b b b
X mesn /' \ mMen m <> n J X Men
a C a C a C a «> C

Figure 2: Applying various modes to a preorder

Our approach: Modal subtyping!

Goal: Handle functions which are monotone in only part of their input without clunky
term annotations:

subtractBEach : List (N x opN) — List N setMap : LJ(LJA — B) — Set A — Set B
subtractEachxs = map (A(x,y).x —y) xs setMap fxs = dox < xs;return (f x)

Method: Construct and eliminate modal types implicitly via subtyping. Since types are
preorders, subtyping means subpreordering:

A<:BIfACBandx<y:A = x<vy:B

For example, [JA <: A, becausex <y/Ay <x: A = x < y:A. Thislets subtyping
eliminate LJA. But, how can it introduce [1?7 To do that, just like our intro and elim rules,
we must let subtyping alter the modes in the typing context.

Modal subtyping alters the context

We generalize our subtyping judgment to [T]A <: B, giving the greatest tone T such that
TA <:B.

SUBSUMPTION [I-INJECTION []-EXTRACTION
x:[TIAFM:B U|B <: C T]IA <: B [T]A <: B
x: [UTJAFM:C LIT]A <: 1B TOILIA <: B

Example typing and subtyping rules

| now drop the pretense that contexts have only one variable.

x:[TIAel' T<id MNy:[UBFM:C id<U

T(xi: [UfA) = (x40 [TUAL);
FEx: A Ay M:B— C

MFM:A [TITA<:B—-C I,FN:B
TIIAT, EFMN:C

MEM:A [L,x:[TIAFN:B
T AL EFEletx=MinN:B

TIA <: B
[UT]A <: UB

TIA<:B UV
TUJVA <: B

id]A < A

U & {id,Op, <>} U < T [T]Az < Al [U]Bl < Bz [<>A2 <: Al []Bl <: Bz
[U](Al — Bl) < Az — Bz [(Al — Bl) < Az — Bz

References

[1] Andreas Abel.
Polarized subtyping for sized types.
In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First
International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Proceedings, volume
3967 of Lecture Notes in Computer Science, pages 381--392. Springer, 2006.

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.
Consistency analysis in Bloom: a CALM and collected approach.
In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249--260, 2011.

[3] Michael Arntzenius and Neelakantan R. Krishnaswami.
Datafun: A functional Datalog.
In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, pages 214--227,
New York, NY, USA, 2016. ACM.

4] Lindsey Kuper and Ryan R. Newton.
LVars: lattice-based data structures for deterministic parallelism.
In Clemens Grelck, Fritz Henglein, Umut A. Acar, and Jost Berthold, editors, Proceedings of the 2nd ACM SIGPLAN workshop
on Functional high-performance computing, Boston, MA, USA, FHPC@ICFP 2013, September 25-27, 2013, pages 71--84. ACM,
2013.

[5] Frank Pfenning and Rowan Davies.
A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511--540, 2001.

