Type inference for monotonicity

Michael Arntzenius

University of Birmingham

Problem: Ensuring functions are monotone

Monotonicity crops up in interesting places:

- 1. In the query languages Datalog and Datafun [3], monotonicity is needed to ensure recursive queries terminate.
- 2. In abstract interpretation, static analyses are phrased as monotone maps on lattices.
- 3. For ensuring eventual consistency in distributed systems [2] and determinism in concurrent systems [4].

In all these contexts, it's useful to be able to guarantee a function is monotone. So: **how** can we ensure monotonicity using types?

I consider four **modes**, ways a function may respect the order on its domain:

- id is monotone, or order-preserving. For example, $\lambda x. x.$
- op is antitone, or order-inverting. For example, not : bool \rightarrow bool.
- Is equivariant, preserving only equivalence. Usually, *all* functions are equivariant.
- \Diamond is bivariant, or both mono- and antitone. For example, λx . 42.

Modes as preorder transformations

Formally, modes alter **preorderings** (reflexive, transitive relations), as shown in Figures 1 and 2. We say $f : A \rightarrow B$ has mode T iff f is monotone from TA $\rightarrow B$.

Modes are *ordered* by what they do to preorders: $T \leq U$ iff $x \leq y : TA \implies x \leq y : UA$. Modes can also be *composed*: If $f : A \rightarrow B$ has mode T and $g : B \rightarrow C$ has mode U, then $g \circ f$ has mode UT.

Variables get usage modes, too

Besides types, we also care about the *mode* at which a variable is used. To simplify our examples, we consider only single-variable contexts. The typing judgment is then:

 $\mathbf{x} : [\mathsf{T}]\mathsf{A} \vdash \mathsf{M} : \mathsf{B}$

Figure 2: Applying various modes to a preorder

Our approach: Modal subtyping!

Goal: Handle functions which are monotone in only part of their input *without* clunky term annotations:

subtractEach : List $(\mathbb{N} \times \operatorname{op} \mathbb{N}) \to \operatorname{List} \mathbb{N}$ setMap : $\Box(\Box A \to B) \to \operatorname{Set} A \to \operatorname{Set} B$ subtractEach $xs = map(\lambda(x,y), x-y)xs$ setMap f $xs = do x \leftarrow xs$; return (f x)

Method: Construct and eliminate modal types *implicitly* via **subtyping**. Since types are preorders, subtyping means *subpreordering*:

A <: B iff A \subseteq B and x \leq y : A \implies x \leq y : B

For example, $\Box A <: A$, because $x \leq y \land y \leq x : A \implies x \leq y : A$. This lets subtyping *eliminate* $\Box A$. But, how can it *introduce* \Box ? To do that, just like our intro and elim rules, we must let subtyping alter the modes in the typing context.

Modal subtyping alters the context

We generalize our subtyping judgment to [T]A <: B, giving the greatest tone T such that TA <: B.

subsumption $x : [T]A \vdash M : B$	[U]B <: C	\Box -injection [T]A <: B	\Box -extraction $[T]A <: B$
$x : [UT]A \vdash M : C$		$[\Box T]A <: \Box B$	$[T\Diamond]\Box A <: B$

Approach 1: Annotate the arrows

Annotating function types with their mode is the obvious approach, used in Datafun [3] and variance typing [1]:

> setMap : $(A \xrightarrow{\Box} B) \xrightarrow{\Box} Set A \xrightarrow{id} Set B$ setMap f xs = do x \leftarrow xs return (f χ)

But it cannot capture more complex input-output ordering relationships:

subtractEach : List $(\mathbb{N} \times \mathbb{N}) \xrightarrow{???}$ List \mathbb{N} subtractEach xs = map $(\lambda(x, y), x - y)$ xs

A mode on the arrow cannot indicate this function is **monotone** in the first half of each $(\mathbb{N} \times \mathbb{N})$ pair, but **antitone** in the second.

Approach 2: Modal types

Let (op A) be A with its ordering inverted. Antitone maps $(A \xrightarrow{op} B)$ are just monotone maps (op $A \rightarrow B$). Instead of annotating arrows, we can make **all** functions monotone, and apply modes directly to types! Now subtractEach has a precise type:

subtractEach : List $(\mathbb{N} \times \operatorname{op} \mathbb{N}) \to \operatorname{List} \mathbb{N}$

Example typing and subtyping rules

I now drop the pretense that contexts have only one variable.

 $\mathsf{T}(x_i:[U_i]A_i)_i = (x_i:[\mathsf{T}U_i]A_i)_i \quad \frac{x:[\mathsf{T}]A \in \Gamma \quad \mathsf{T} \leqslant \mathsf{id}}{\Gamma \vdash x:A} \quad \frac{\Gamma, y:[U]B \vdash M:C \quad \mathsf{id} \leqslant U}{\Gamma \vdash \lambda y.\,M:B \to C}$ $\Gamma_1 \vdash M : A \quad [T]A <: B \to C \quad \Gamma_2 \vdash N : B \quad \Gamma_1 \vdash M : A \quad \Gamma_2, x : [T]A \vdash N : B$ $T\Gamma_1 \wedge \Gamma_2 \vdash M N : C \qquad \qquad T\Gamma_1 \wedge \Gamma_2 \vdash \text{let } x = M \text{ in } N : B$ [T]A <: B[UT]A <: UB $[T]A <: B \quad U \dashv V$ $[\mathsf{id}]A <: A$ [TU]VA <: B $U \in \{id, op, \diamondsuit\} \quad U \leqslant T \quad [T]A_2 <: A_1 \quad [U]B_1 <: B_2 \quad [\diamondsuit]A_2 <: A_1 \quad [\Box]B_1 <: B_2$ $[U](A_1 \to B_1) <: A_2 \to B_2 \qquad \qquad \boxed{[\Box](A_1 \to B_1) <: A_2 \to B_2}$

References

A key feature of modal type systems [5] is that the intro and elim rules for modal types manipulate the modes in the typing context:

$$x : [T]A \vdash M : B$$
 $x : [T]A \vdash M : \Box B$ $y : [\Box]B \vdash N : C$ $x : [\Box]T] \vdash box M : \Box B$ $x : [T]A \vdash let box y = M in N : C$

However, needing to **explicitly introduce and eliminate** modal types clutters up functions like setMap:

setMap :
$$\Box(\Box A \rightarrow B) \rightarrow \text{Set } A \rightarrow \text{Set } B$$

setMap f xs =
let box g = f in
do x \leftarrow xs
let box y = x
return (box (g (box y)))

- [1] Andreas Abel.
 - Polarized subtyping for sized types.

In Dima Grigoriev, John Harrison, and Edward A. Hirsch, editors, Computer Science - Theory and Applications, First International Computer Science Symposium in Russia, CSR 2006, St. Petersburg, Russia, June 8-12, 2006, Proceedings, volume 3967 of Lecture Notes in Computer Science, pages 381--392. Springer, 2006.

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak.

Consistency analysis in Bloom: a CALM and collected approach.

In CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, pages 249--260, 2011.

[3] Michael Arntzenius and Neelakantan R. Krishnaswami.

Datafun: A functional Datalog.

In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, pages 214--227, New York, NY, USA, 2016. ACM.

[4] Lindsey Kuper and Ryan R. Newton.

LVars: lattice-based data structures for deterministic parallelism.

In Clemens Grelck, Fritz Henglein, Umut A. Acar, and Jost Berthold, editors, Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-performance computing, Boston, MA, USA, FHPC@ICFP 2013, September 25-27, 2013, pages 71--84. ACM, 2013.

[5] Frank Pfenning and Rowan Davies.

A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science, 11(4):511--540, 2001.