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Compute fixed points
of monotone maps
on semilattices
satisfying an ascending chain condition



I Fixed point: Keep going until nothing changes.

I Monotone: Unidirectional: ⊥⇒ constant ⇒ >
I Semilattice:

>

⊥

. . . -2 -1 0 1 2 . . .

(varying)

(constants)

(undefined)

I ACC: Can’t go up forever.



Examples of computing fixed points of monotone maps on
semilattices satisfying an ascending chain condition:

I Static analyses

I Graph algorithms: reachability, shortest path, ...

I Parsing context-free grammars

I Datalog (as long as the semilattice is finite sets)



Datafun is:

I a simply typed λ-calculus

I where types are posets
& some are semilattices

I that tracks monotonicity via types

I to let you compute fixed points

I and know they terminate.



Types as posets

Type Meaning Ordering
N naturals 0 < 1 < 2 < . . .
2 booleans false < true
{A} finite subsets of A ⊆

A → B functions pointwise

A
+→ B monotone functions pointwise

member : N → {N} +→ 2
member x s = ∃(y ∈ s) x = y
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Tracking monotonicity

I Two types of function: discrete or monotone

I Two kinds of variable: discrete or monotone

I Two typing contexts: ∆ discrete, Γ monotone

∆; Γ ` e : A

“e has type A with free variables ∆, Γ ;
moreover, e is monotone in Γ .”



Tracking monotonicity: Function application

∆; Γ ` f : A
+→ B ∆; Γ ` a : A

∆; Γ ` f a : B
monotone app

∆; Γ ` f : A → B ∆; ∅ ` a : A
∆; Γ ` f a : B

discrete app

Otherwise:

coerce : (N → N) → (N +→ N)
coerce f x = f x
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Tracking monotonicity: Finite sets

e ::= ... | {} | e ∪ e | {e} |
⋃
(x ∈ e) e

| {e | x ∈ e, ...}

∆; ∅ ` e : A
∆; Γ ` {e} : {A}
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Example: Relational composition

(•) : {A×
eq
B}

+→ {
eq
B × C }

+→ {A× C }

s • t = {(x , z) | (x , y) ∈ s, (!y , z) ∈ t}



Fixed points

fix x is e

∆; Γ,x :
fin
L ` e :

fin
L

∆; Γ ` fix x is e :
fin
L

A monotone map on a finite semilattice with
decidable equality.
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Example: Reachability

path : {
fin
A×

fin
A}

+→ {
fin
A×

fin
A}

path E = fix P is E ∪ (P •P)

In Datalog:

path(X,Y) :- edge(X,Y).

path(X,Z) :- path(X,Y), path(Y,Z).



Example: CYK Parsing

Nonterminals: A,B ,C ...
Literal strings: s, t, ...

Rules are all of the form A → B C or A → s.

Apply the following inference rules to saturation:

A → s w [i ..j ] = s

A(i , j)

A → B C B(i , j) C (j , k)

A(i , k)

where A(i , j) = “A produces the substring w [i ..j ]”
and w is the input string
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Example: CYK Parsing

type rule = Concat(symbol, symbol) | String(string)
type grammar = {symbol× rule}
type fact = symbol× N× N

step : string → grammar → {fact}
+→ {fact}

step w G prev =
{(a, i , k) | (a,Concat(b, c)) ∈ G ,

(!b, i , j) ∈ prev, (!c , !j , k) ∈ prev}
∪ { (a, i , i + length s)

| (a,String(s)) ∈ G ,
i ∈ range 0 (length w − length s),
s = substring w i (i + length s)}



Summary

I Many algorithms are concisely expressed as fixed points
of monotone maps on semilattices.

I Datafun is a simple, pure, and total language for
computing these fixed points.

I Key idea: track monotonicity with types!

I Has a simple denotational semantics (in paper) &
prototype implementation (on github).

I Generalizes Datalog to other semilattices.

rntz.net/datafun

rntz.net/datafun


Fin.



Future work

I Optimization
I Semi-näıve evaluation
I Dataflow (push & pull)
I Magic sets

I More semilattice types

I More flexible termination/ACC checking
I Aggregation operations (summing, averaging)

I Commutative monoids?
I Other applications of types for monotonicity

I Types for functoriality?
I LVars & monotone processes



Datafun vs Datalog

Datafun pros Datalog pros
Functional abstraction! Finiteness/ACC is automatic
Semilattices other than Pfin Often more concise
Can do arithmetic Existing optimization literature
Can nest sets

See also: Flix, PLDI 2016, Madsen et al



Datafun vs Flix

Datafun pros Flix pros
Functions on relations Programmer-defined semilattices
Types for monotonicity No types for monotonicity



Boolean elimination in a monotone world

∆; ∅ ` e1 : 2 ∆; Γ ` e2 : A ∆; Γ ` e3 : A
∆; Γ ` if e1 then e2 else e3 : A

Discrete If

∆; Γ ` e1 : 2 ∆; Γ ` e2 : L
∆; Γ ` if e1 then e2 else ε : L

Monotone If

For example:

guard : 2
+→ {A}

+→ {A}
guard c s = if c then s else {}


