Datafun

Michael Arntzenius¹ Neel Krishnaswami²

 1 University of Birmingham

²University of Cambridge

ICFP 2016


```
1 x := 0 x = 0

2 c := x x = 0, c = 0

3 while true do x = 0, c = 0

4 print c

5 print x
```

```
1 x := 0 x = 0

2 c := x x = 0, c = 0

3 while true do x = 0, c = 0

4 print c x = 0, c = 0

5 print x
```

```
1 x := 0 x = 0

2 c := x x = 0, c = 0

3 while true do x = 0, c = 0

4 print c x = 0, c = 0

5 print x = 0, c = 0
```

$$1 ext{ } x := 0 ext{ } x = 0 ext{ } x = 0 ext{ } x = 0, c = 0 ext{ } 3 ext{ } while true do ext{ } x = 0, c = 0 ext{ } 4 ext{ } print c ext{ } x = 0, c = 0 ext{ } 5 ext{ } print x ext{ } x = 0, c = 0 ext{ } 6 ext{ } x += 1 ext{ } x = 1, c = 0 ext{ }$$

1
$$x := 0$$
 $x = 0$
2 $c := x$ $x = 0, c = 0$
3 while true do $x = 0, c = 0$
4 print c $x = 0, c = 0$
5 print c $x = 0, c = 0$
6 $c = 0$ $c = 0$
6 $c = 0$ $c = 0$

1 x := 0 x = 02 c := x x = 0, c = 03 while true do x = T, c = 04 print c x = T, c = 05 print x x = 0, c = 06 x += 1 x = 0

1
$$x := 0$$
 $x = 0$
2 $c := x$ $x = 0, c = 0$
3 while true do $x = T, c = 0$
4 print c $x = T, c = 0$
5 print x $x = T, c = 0$
6 $x += 1$ $x = T, c = 0$

1
$$x := 0$$
 $x = 0$
2 $c := x$ $x = 0, c = 0$
3 while true do $x = T, c = 0$
4 print c $x = T, c = 0$
5 print x $x = T, c = 0$
6 $x += 1$ $x = T, c = 0$

Compute **fixed points**of **monotone maps**on **semilattices**satisfying an **ascending chain condition**

- ▶ **Fixed point**: Keep going until nothing changes.
- ▶ **Monotone**: Unidirectional: $\bot \Rightarrow$ constant $\Rightarrow \top$
- Semilattice:

► ACC: Can't go up forever.

Examples of computing **fixed points** of **monotone maps** on **semilattices** satisfying an **ascending chain condition**:

- Static analyses
- Graph algorithms: reachability, shortest path, ...
- Parsing context-free grammars
- Datalog (as long as the semilattice is finite sets)

Datafun is:

- a simply typed λ-calculus
- where types are posets& some are semilattices
- that tracks monotonicity via types
- to let you compute fixed points
- and know they terminate.

Types as posets

Type	Meaning	Ordering
\mathbb{N}	naturals	0 < 1 < 2 <
2	booleans	false < true
$\{A\}$	finite subsets of A	\subseteq
$A \rightarrow B$	functions	pointwise
$A \xrightarrow{+} B$	monotone functions	pointwise

Types as posets

Type	Meaning	Ordering
$\overline{\mathbb{N}}$	naturals	0 < 1 < 2 <
2	booleans	false < true
$\{\mathcal{A}\}$	finite subsets of A	\subseteq
$A \rightarrow B$	functions	pointwise
$A \xrightarrow{+} B$	monotone functions	pointwise

member :
$$\mathbb{N} \to {\mathbb{N}} \stackrel{+}{\to} 2$$

member $x = \exists (y \in s) \ x = y$

Tracking monotonicity

- Two types of function: discrete or monotone
- ▶ Two kinds of *variable*: discrete or monotone
- ▶ Two *typing contexts*: Δ discrete, Γ monotone

$$\Delta$$
; $\Gamma \vdash e : A$

"e has type A with free variables Δ , Γ ; moreover, e is monotone in Γ ."

Tracking monotonicity: Function application

$$\frac{\Delta; \Gamma \vdash f : A \xrightarrow{+} B \qquad \Delta; \Gamma \vdash a : A}{\Delta; \Gamma \vdash f \ a : B}$$
 monotone app

Tracking monotonicity: Function application

$$\frac{\Delta;\Gamma \vdash f:A \xrightarrow{+} B \qquad \Delta;\Gamma \vdash a:A}{\Delta;\Gamma \vdash f:a:B}$$
 monotone app

$$\frac{\Delta; \Gamma \vdash f : A \to B \qquad \Delta; \emptyset \vdash a : A}{\Delta; \Gamma \vdash f \ a : B} \text{ discrete app}$$

Tracking monotonicity: Function application

$$\frac{\Delta; \Gamma \vdash f : A \xrightarrow{+} B \qquad \Delta; \Gamma \vdash a : A}{\Delta; \Gamma \vdash f : a : B}$$
 monotone app

$$\frac{\Delta; \Gamma \vdash f : A \to B}{\Delta; \Gamma \vdash f : a : B} \xrightarrow{\Delta; \emptyset} \vdash a : A$$
 discrete APP

Otherwise:

coerce :
$$(\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \xrightarrow{+} \mathbb{N})$$

coerce $f \mathbf{x} = f \mathbf{x}$

Tracking monotonicity: Finite sets

$$e ::= ... | \{\} | e \cup e | \{e\} | \bigcup (x \in e) e$$

Tracking monotonicity: Finite sets

$$e ::= ... | \{\} | e \cup e | \{e\} | \bigcup (x \in e) e$$

$$\frac{\Delta; \emptyset \vdash e : A}{\Delta; \Gamma \vdash \{e\} : \{A\}}$$

Tracking monotonicity: Finite sets

$$e ::= ... | {} | e \cup e | {e} | \bigcup (x \in e) e$$

| ${e \mid x \in e, ...}$

$$\frac{\Delta; \emptyset \vdash e : A}{\Delta; \Gamma \vdash \{e\} : \{A\}}$$

Example: Relational composition

$$(\bullet): \{A \times B_{eq}\} \xrightarrow{+} \{B_{eq} \times C\} \xrightarrow{+} \{A \times C\}$$

$$\mathbf{s} \bullet \mathbf{t} = \{(x, z) \mid (x, y) \in \mathbf{s}, (!y, z) \in \mathbf{t}\}$$

Fixed points

fix x is e

Fixed points

fix
$$x$$
 is e

$$\frac{\Delta; \Gamma, \mathbf{x} : \underline{L}_{fin} \vdash e : \underline{L}_{fin}}{\Delta; \Gamma \vdash \text{fix } \mathbf{x} \text{ is } e : \underline{L}_{fin}}$$

A monotone map on a finite semilattice with decidable equality.

Fixed points

fix
$$x$$
 is e

$$\frac{\Delta; \Gamma, \mathbf{x} : \underline{L}_{fin} \vdash e : \underline{L}_{fin}}{\Delta; \Gamma \vdash \text{fix } \mathbf{x} \text{ is } e : \underline{L}_{fin}}$$

A monotone map on a finite semilattice with decidable equality.

Example: Reachability

$$\begin{array}{ll} \textit{path} & : \; \{ \underset{\mathit{fin}}{A} \times \underset{\mathit{fin}}{A} \} \xrightarrow{+} \{ \underset{\mathit{fin}}{A} \times \underset{\mathit{fin}}{A} \} \\ \textit{path} \; \mathbf{E} = \mathsf{fix} \; \mathbf{P} \; \mathsf{is} \; \mathbf{E} \cup (\mathbf{P} \bullet \mathbf{P}) \end{array}$$

In Datalog:

```
path(X,Y) :- edge(X,Y).
path(X,Z) :- path(X,Y), path(Y,Z).
```

Nonterminals: A, B, C...Literal strings: s, t, ...

Rules are all of the form $A \rightarrow B C$ or $A \rightarrow s$.

Nonterminals: A, B, C...Literal strings: s, t, ...

Rules are all of the form $A \rightarrow B C$ or $A \rightarrow s$.

Apply the following inference rules **to saturation**:

Nonterminals: A, B, C...Literal strings: s, t, ...

Rules are all of the form $A \rightarrow B C$ or $A \rightarrow s$.

Apply the following inference rules **to saturation**:

$$\frac{A \to s \quad w[i..j] = s}{A(i,j)} \qquad \frac{A \to B \ C \quad B(i,j) \quad C(j,k)}{A(i,k)}$$

where A(i,j) = "A produces the substring w[i..j]" and w is the input string

```
type rule = CONCAT(symbol, symbol) | STRING(string)
type grammar = \{\text{symbol} \times \text{rule}\}\
type fact = symbol \times \mathbb{N} \times \mathbb{N}
step: string \rightarrow grammar \rightarrow {fact} \xrightarrow{+} {fact}
step w G prev =
      \{(a,i,k)\mid (a,\operatorname{CONCAT}(b,c))\in G,
                      (!b, i, j) \in \mathbf{prev}, (!c, !j, k) \in \mathbf{prev}
   \cup \{(a, i, i + \text{length } s)\}
       |(a, String(s)) \in G,
         i \in \text{range 0 (length } w - \text{length } s),
         s = \text{substring } w \ i \ (i + \text{length } s)
```

Summary

- Many algorithms are concisely expressed as fixed points of monotone maps on semilattices.
- Datafun is a simple, pure, and total language for computing these fixed points.
- Key idea: track monotonicity with types!
- ► Has a simple denotational semantics (in paper) & prototype implementation (on github).
- Generalizes Datalog to other semilattices.

rntz.net/datafun

FIN.

Future work

- Optimization
 - Semi-naïve evaluation
 - Dataflow (push & pull)
 - Magic sets
- More semilattice types
- More flexible termination/ACC checking
- Aggregation operations (summing, averaging)
 - Commutative monoids?
- Other applications of types for monotonicity
 - Types for functoriality?
 - LVars & monotone processes

Datafun vs Datalog

Datafun pros	Datalog pros
Functional abstraction!	Finiteness/ACC is automatic
Semilattices other than \mathcal{P}_{fin}	Often more concise
Can do arithmetic	Existing optimization literature
Can nest sets	

See also: FLIX, PLDI 2016, Madsen et al

Datafun vs FLIX

	FLIX pros
	Programmer-defined semilattices
Types for monotonicity	No types for monotonicity

Boolean elimination in a monotone world

$$\frac{\Delta; \emptyset \vdash e_1 : 2 \qquad \Delta; \Gamma \vdash e_2 : A \qquad \Delta; \Gamma \vdash e_3 : A}{\Delta; \Gamma \vdash \mathsf{if} \ e_1 \ \mathsf{then} \ e_2 \ \mathsf{else} \ e_3 : A} \ \mathsf{DISCRETE} \ \mathsf{IF}$$

$$\frac{\Delta; \Gamma \vdash e_1 : 2}{\Delta; \Gamma \vdash if} = \frac{\Delta; \Gamma \vdash e_2 : L}{e_1 \text{ then } e_2 \text{ else } \epsilon : L}$$
 MONOTONE IF

For example:

guard :
$$2 \xrightarrow{+} \{A\} \xrightarrow{+} \{A\}$$

guard $\mathbf{c} \mathbf{s} = \text{if } \mathbf{c} \text{ then } \mathbf{s} \text{ else } \{\}$

