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print c
print x

# can be replaced by print 0
# but this can't
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x :=0

cC :=X

while true do
print c
print x



3 while true do

x=0,¢c=0
x=0,¢c=0

print c

print x



3 while true do

X =

0,c=0

C
x=0,c=0

print x



3 while true do

print x
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3 while true do
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print x
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3 while true do

X =

T,c=0

x=1,c=0

print c

x=0,¢c=0

print x

x += 1



3 while true do

X

x +=1
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3 while true do
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print x
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X

x += 1



3 while true do

T,c=0

X =

print x
x += 1



Compute fixed points

of monotone maps

on semilattices

satisfying an ascending chain condition
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Fixed point: Keep going until nothing changes.
Monotone: Unidirectional: L = constant = T
Semilattice:

(varying)
// \ \\ ( y g)
constants
\\ ‘ // (undefined)

ACC: Can't go up forever.



Examples of computing fixed points of monotone maps on
semilattices satisfying an ascending chain condition:

» Static analyses
» Graph algorithms: reachability, shortest path, ...
» Parsing context-free grammars

» Datalog (as long as the semilattice is finite sets)



Datafun is:
» a simply typed A-calculus

» where types are posets
& some are semilattices

» that tracks monotonicity via types
» to let you compute fixed points

» and know they terminate.



Types as posets

Type Meaning Ordering
N naturals 0<l<2<...
2 booleans false < true
{A}  finite subsets of A C
A — B functions pointwise
A X, B monotone functions pointwise



Types as posets

Type Meaning Ordering
N naturals 0<l<?2<...
2 booleans false < true
{A}  finite subsets of A C
A — B functions pointwise

A X, B monotone functions pointwise

member : N — {N} * 9
member xs =3(y €s)x =y



Tracking monotonicity

» Two types of function: discrete or monotone
» Two kinds of variable: discrete or monotone

» Two typing contexts: A discrete, I' monotone

ATEe:A

‘e has type A with free variables A, T';
moreover, € is monotone in I".”



Tracking monotonicity: Function application

ATHF:ASB  ATFa:A
ATHfa:B

MONOTONE APP
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Tracking monotonicity: Function application

ATHF:ASB  ATha:A
ATHfa:B

MONOTONE APP

ATHF:A— B ADFa: A
ATHfa:B

DISCRETE APP

Otherwise:

coerce : (N— N) — (N + N)
coerce f x =1F x



Tracking monotonicity: Finite sets
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Tracking monotonicity: Finite sets
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Tracking monotonicity: Finite sets

e = ..|{}|eUel{e}| Uxee)e

| {e|x€e..}

ADEe: A
AT = {et: {A}



Example: Relational composition

(o) :{Ax B} B {Bx C} 5 {Ax C}
set ={(x,2) | (x,y) €s,(ly,z) € t}



Fixed points

fixxXis e



Fixed points

fix X is e

A;l“,x:ﬁLl—e:ﬁL
A;Fl—fixxise:ﬁL

A monotone map on a finite semilattice with
decidable equality.



Fixed points

fixxXis e

A;szﬁLl— e:ﬁL
A;I"I—fixxise:ﬁL

A monotone map on a finite semilattice with
decidable equality.



Example: Reachability

path : {ﬁAﬂxé}L{éxé}
pathE=fix Pis EU (P eP)
In Datalog:

path(X,Y) :- edge(X,Y).
path(X,Z) :- path(X,Y), path(Y,Z).



Example: CYK Parsing

Nonterminals: A, B, C...
Literal strings: s, t,...

Rules are all of the form A — B C or A — s.
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Example: CYK Parsing

Nonterminals: A, B, C...
Literal strings: s, t,...

Rules are all of the form A — B C or A — s.

Apply the following inference rules to saturation:

A—s wli.jl=s A—=BC B(i,j) C(j,k)
Al J) Ali, k)

where A(/,j) = "“A produces the substring wli..j]"
and w is the input string



Example: CYK Parsing

type rule = CONCAT(symbol,symbol) | STRING(string)
type grammar = {symbol x rule}
type fact = symbol x N x N

step : string — grammar — {fact} + {fact}
step w G prev =
{(a,i, k) | (a, CONCAT(b,C)) € G,
(Ib,i,j) € prev, (!c,lj, k) € prev}
U {(a,i, i+ length s)
| (a, STRING(s)) € G,
i € range 0 (length w — length s),
s = substring w i (i + length s)}



Summary

» Many algorithms are concisely expressed as fixed points
of monotone maps on semilattices.

» Datafun is a simple, pure, and total language for
computing these fixed points.

» Key idea: track monotonicity with types!

» Has a simple denotational semantics (in paper) &
prototype implementation (on github).

» Generalizes Datalog to other semilattices.

rntz.net/datafun


rntz.net/datafun

FIN.



Future work

» Optimization
» Semi-naive evaluation
» Dataflow (push & pull)
» Magic sets

v

More semilattice types

More flexible termination/ACC checking

Aggregation operations (summing, averaging)
» Commutative monoids?

Other applications of types for monotonicity

» Types for functoriality?
» LVars & monotone processes

v

v

v



Datafun vs Datalog

Datafun pros ‘ Datalog pros

Functional abstraction! Finiteness/ACC is automatic
Semilattices other than Pf, | Often more concise

Can do arithmetic Existing optimization literature

Can nest sets

See also: Frix, PLDI 2016, Madsen et al



Datafun vs FLIX

Datafun pros | FLIX pros

Functions on relations | Programmer-defined semilattices
Types for monotonicity | No types for monotonicity



Boolean elimination in a monotone world

A e :2 ATHe: A ATHFe;: A
AT Fif e; then e else e3: A

DISCRETE IF

AT He 12 ATHFe:L
AT Hif e then ey else € : L

MONOTONE IF

For example:

guard : 2 + {A} * {A}
guard ¢ s = if ¢ then s else {}



