Datafun

a functional query language

Michael Arntzenius
daekharel@gmail.com
http://www.rntz.net/datafun

Strange Loop, September 2017
Recurse Center, March 2018

mailto:daekharel@gmail.com
http://www.rntz.net/datafun

Early stage work

What if programming languages
were more like query languages?

1. What's a functional query language?
2. From Datalog to Datafun

3. Incremental Datafun

SQL

Parent | Child
Arathorn | Aragorn
Drogo Frodo
Earwen Galadriel
Finarfin

Galadriel

SELECT parent
FROM parentage
WHERE child = "Galadriel"

Tables as sets

Parent | Child
Arathorn | Aragorn
Drogo Frodo
Earwen Galadriel
Finarfin

Galadriel

// set of (parent, child) pairs
{(Arathorn, Aragorn)

, (Drogo, Frodo)

, (Edrwen, Galadriel)

, (Finarfin, Galadriel)

)

Tuples and sets are just datatypes!

Tuples and sets are just datatypes!

If tables are sets, what are queries?

Queries as set comprehensions

SELECT parent
FROM parentage
WHERE child = "Galadriel"

Queries as set comprehensions

SELECT parent
FROM parentage
WHERE child = "Galadriel"

—

{ parent | (parent, child) in parentage
, child = "Galadriel" }

Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child

FROM parentage A INNER JOIN parentage B
ON A.parent = B.parent

WHERE A.child <> B.child

—

{ (a,b) | (parent, a) in parentage
, (parent, b) in parentage
,Ilot (a=b)}

Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child

FROM parentage A INNER JOIN parentage B
ON A.parent = B.parent

WHERE A.child <> B.child

—

{ (a,b) | (parent, a) in parentage
, (parent, b) in parentage
,IlOt (a=b)}

Recipe for a functional query language

1. Take a functional language

2. Add sets and set comprehensions

3. ... done?

But can it go fast?

Loop reordering

x in EXPR1, y in EXPR2
=7

{ ... | y in EXPR2, x in EXPR1 }

Loop reordering

{ ... | x in EXPR1, y in EXPR2 }
{ ... | y in EXPR2, x in EXPR1 }

1. Side-effects
2. Nontermination

Loop reordering

{ print x | x in {"hello"}, y in {0,1} }

4

{ print x | y in {0,1}, x in {"hello"} }

1. Side-effects

2. Nontermination

Loop reordering

{ ... I xin {}, y in oco-loop } = {}

4

{ ... | y in oco-loop, x in {} } == oo-loop

1. Side-effects

2. Nontermination

Recipe for a functional query language, v2

1. Take a pure, total functional language
2. Add sets and set comprehensions

3. Optimize!

WHAT HAVE WE GAINED?

» Can factor out repeated patterns with
higher-order functions

» Sets are just ordinary values

» Sets, bags, lists: choose your container semantics!

WHAT HAVE WE GAINED?

» Can factor out repeated patterns with
higher-order functions

» Sets are just ordinary values

» Sets, bags, lists: choose your container semantics!

AT WHAT COST?

» Implementation complexity:
GC, closures, nested sets, optimizing comprehensions...

» Re-inventing the wheel:
persistence, transactions, replication...

1. What's a functional query language?
2. From Datalog to Datafun

3. Incremental Datafun

Parent | Child
Arathorn | Aragorn
Drogo Frodo
Earwen Galadriel
Finarfin | Galadriel

Is Earendil one of Aragorn’s ancestors?

Datalog in a nutshell

X is Z's ancestor if X is Z's parent.

X is Z's ancestor if X is Y's parent and Y is Z's ancestor.

Datalog in a nutshell

ancestor(X,Z) if parent(X, 2).

ancestor(X, Z) if parent(X, Y) and ancestor(Y, Z).

Datalog in a nutshell

ancestor(X,Z) :- parent(X, Z).

ancestor(X, Z) :- parent(X, Y), ancestor(Y,

2).

Datalog is deductive: it chases rules to their
logical conclusions.

Can we capture this feature functionally?

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.
Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(ldril, Edrendil).
parent(Earendil, Elros).

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.
Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(ldril, Edrendil).
parent(Earendil, Elros).

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.
Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(ldril, Edrendil).
parent(Earendil, Elros).

Procedure:
1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.
Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(ldril, Edrendil). (new!)

Procedure:
1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.
Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(Idril, Edrendil).

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(Idril, Edrendil).
ancestor(Earendil, Elros). (new!)

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(Idril, Edrendil).
ancestor(Earendil, Elros).

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(Idril, Edrendil).
ancestor(Earendil, Elros).
ancestor(ldril, Elros). (new!)

Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:
parent(ldril, Edrendil).
parent(Earendil, Elros).
ancestor(Idril, Edrendil).
ancestor(Earendil, Elros).
ancestor(ldril, Elros).

Repeatedly apply a set of rules
until nothing changes

Repeatedly apply a function
until nothing changes

Repeatedly apply a function
until its output equals its input

Repeatedly apply a function
until its output equals its input
i.e. it reaches a fixed point

Repeatedly apply a function
until its output equals its input
i.e. it reaches a fixed point

fix x = ... function of x ...

// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

U {(x2) | (xy) in parent
, (y,z) in ancestor}

// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

U {(x2) | (xy) in parent
, (y,z) in ancestor}

// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

U {(x,z)

(x,y) in parent
, (¥,2) in ancestor}

Repeatedly applying:
X — parent U {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Edrendil), (Earendil, Elros)}

Steps:
0

Repeatedly applying:
X — parent U {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Edrendil), (Earendil, Elros)}

Steps:
0
— parent U {(x,z) | (x,y) in parent, (y,z) in 0}

Repeatedly applying:
X — parent U {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Edrendil), (Earendil, Elros)}

Steps:
0
— parent U {(x,z) | (x,y) in parent, (y,z) in 0}

= parent

Repeatedly applying:

X — parent U {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Edrendil), (Earendil, Elros)}
Steps:
0
— parent U {(x,z) | (x,y) in parent, (y,z) in 0}
= parent

— parent U {(x,z) | (x,y) in parent, (y,z) in parent}

Repeatedly applying:

X — parent U {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Edrendil), (Earendil, Elros)}
Steps:

0

parent U {(x,z) | (x,y) in parent, (y,z) in 0}
parent

parent U {(x,z) | (x,y) in parent, (y,z) in parent}

—
—
= {(Idril, E&rendil), (E&rendil, Elros), (Idril, Elros)}

But can it go fast?

1. What's a functional query language?
2. From Datalog to Datafun

3. Incremental Datafun

Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminaive evaluation in Datalog:
How do we avoid re-deducing facts we already know?

Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminaive evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs
change?

Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminaive evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs
change?

“A Theory of Changes for Higher-Order Languages:
Incrementalizing A-calculi by Static Differentiation”

[PLDI 2014]

by Yufei Cai, Paolo G Giarrusso, Tillmann Rendel, and Klaus Ostermann

Static differentiation
Every type A has a type of changes, AA.

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Every type also gets an operator &4 : A — AA — A.

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Every type also gets an operator &4 : A — AA — A.

XPOydx = x4+ dx
(x,y) ®axp (dx,dy) = (xDadx,y ®p dy)

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Every type also gets an operator &4 : A — AA — A.

XPOydx = x4+ dx
(x,y) ®axp (dx,dy) = (xDadx,y ®p dy)

A function f : A — B gets a derivative, 0f : A — AA — AB.

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Every type also gets an operator &4 : A — AA — A.

XPOydx = x4+ dx
(x,y) ®axp (dx,dy) = (xDadx,y ®p dy)

A function f : A — B gets a derivative, 0f : A — AA — AB.

flx) = x?
5f(x)(dx) = 2x-dx+ dx?

Static differentiation
Every type A has a type of changes, AA.

AN = 7
AAxB) = AAxAB

Every type also gets an operator &4 : A — AA — A.

X@®ydx = x+dx
(x,y) ®axp (dx,dy) = (xDadx,y ®p dy)

A function f : A — B gets a derivative, 0f : A — AA — AB.
flx) = x?

5f(x)(dx) = 2x-dx+ dx?
f(x)+0f(x)(dx) = x2+2x-dx+dx® = (x+ dx)?

We’ve extended this technique
to handle all of Datafun!

(As of about three weeks ago.)

Finding fixed points faster with derivatives

The naive way to find fixed points looks like this:

0 F(0) — F2(0) = F(0) ...

Finding fixed points faster with derivatives

The naive way to find fixed points looks like this:
0 £(0) = £2(0) — £2(0) — ...
fi(0) and f'*1(D) overlap a lot.

Computing f'1(0) from () does a lot of recomputation.

Finding fixed points faster with derivatives

The naive way to find fixed points looks like this:
0 £(0) = £2(0) — £2(0) — ...
fi(0) and f+1(D) overlap a lot.
Computing f'1(0) from () does a lot of recomputation.

What if we could only compute what changed between
iterations?

X0 = @ dXo = f(@)
X1 = x;UJdx dxj,1 = (5f(X,')(dX,‘)

Theorem: x; = f/(x)

Takeaways

1. Set comprehensions = queries
2. Fixed points = recursive queries (like Datalog)
3. Incremental computation = faster fixed points

4. Datafun has all three!*

* In theory.

Michael Arntzenius
daekharel@gmail.com
@arntzenius

rntz.net/datafun

mailto:daekharel@gmail.com
rntz.net/datafun

