Datafun

a functional query language

Michael Arntzenius daekharel@gmail.com <http://www.rntz.net/datafun>

Strange Loop, September 2017 Recurse Center, March 2018

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Early stage work

What if programming languages were more like query languages?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

1. What's a functional query language?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

2. From Datalog to Datafun

3. Incremental Datafun

SQL

SELECT parent FROM parentage WHERE child = "Galadriel"

Tables as sets

= , (Drogo, Trodo)
= , (Eärwen, Galadriel) // set of (parent, child) pairs {(Arathorn, Aragorn) , (Drogo, Frodo) , (Finarfin, Galadriel) ... }

Tuples and sets are just datatypes!

Tuples and sets are just datatypes!

If tables are sets, what are queries?

Queries as set comprehensions

SELECT parent FROM parentage WHERE child = "Galadriel"

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Queries as set comprehensions

SELECT parent FROM parentage WHERE child = "Galadriel"

KORK ERKER ADE YOUR

{ parent | (parent, child) in parentage , child = "Galadriel" }

Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child FROM parentage A INNER JOIN parentage B ON $A.\text{parent} = B.\text{parent}$ WHERE A.child \langle B.child

$$
\Longrightarrow
$$

KORK ERKER ADE YOUR

 $\{ (a,b) \mid (parent, a) \text{ in parentage} \}$, (parent, b) in parentage not $(a = b)$ }

Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child FROM parentage A INNER JOIN parentage B ON $A.\text{parent} = B.\text{parent}$ WHERE A.child \langle B.child

$$
\Longrightarrow
$$

KORK STRATER STRAKER

 $\{ (a,b) \mid (parent, a) \text{ in parentage} \}$, (parent, b) in parentage not $(a = b)$ }

Recipe for a functional query language

1. Take a functional language

2. Add sets and set comprehensions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

3. ... done?

But can it go fast?

K ロ X K 메 X K B X X B X X D X O Q Q O

{ ... | x in EXPR1, y in EXPR2 } $=$? { ... | y in EXPR2, x in EXPR1 }

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

{ ... | x in EXPR1, y in EXPR2 } \neq { ... | y in EXPR2, x in EXPR1 }

> 1. Side-effects 2. Nontermination

{ print x | x in {"hello"}, y in {0,1} } 6= { print x | y in {0,1}, x in {"hello"} }

1. Side-effects 2. Nontermination

イロト イ御 トイミト イミト ニミー りんぴ

$$
\{ \dots | \ x \text{ in } \{\}, \ y \text{ in } \infty\text{-loop } \} \implies \{\}
$$

$$
\neq
$$

$$
\{ \dots | \ y \text{ in } \infty\text{-loop, } x \text{ in } \{\} \} \implies \infty\text{-loop}
$$

イロト イ御 トイミト イミト ニミー りんぴ

1. Side-effects 2. Nontermination Recipe for a functional query language, v2

1. Take a pure, total functional language

KORK ERKER ADE YOUR

2. Add sets and set comprehensions

3. Optimize!

WHAT HAVE WE GAINED?

- \blacktriangleright Can factor out repeated patterns with higher-order functions
- \triangleright Sets are just ordinary values
- \triangleright Sets, bags, lists: choose your container semantics!

KORK STRATER STRAKER

WHAT HAVE WE GAINED?

- \triangleright Can factor out repeated patterns with higher-order functions
- \triangleright Sets are just ordinary values
- \triangleright Sets, bags, lists: choose your container semantics!

AT WHAT COST?

\blacktriangleright Implementation complexity:

GC, closures, nested sets, optimizing comprehensions...

KORK ERKER ADE YOUR

\blacktriangleright Re-inventing the wheel:

persistence, transactions, replication...

1. What's a functional query language?

2. From Datalog to Datafun

3. Incremental Datafun

Is Eärendil one of Aragorn's ancestors?

K ロ X K 메 X K B X X B X X D X O Q Q O

Datalog in a nutshell

X is Z 's ancestor if X is Z 's parent.

X is Z 's ancestor if X is Y's parent and Y is Z 's ancestor.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Datalog in a nutshell

ancestor(X , Z) if parent(X , Z).

ancestor(X, Z) if parent(X, Y) and ancestor(Y, Z).

Datalog in a nutshell

 $\text{ancestor}(X, Z)$: parent (X, Z) . $\text{arcestor}(X, Z)$: parent (X, Y) , ancestor (Y, Z) .

Datalog is **deductive**: it chases rules to their logical conclusions.

Can we capture this feature functionally?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) :- parent(X, Z).
\text{ancestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

```
parent(Idril, Eärendil).
parent(Eärendil, Elros).
```
- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) :- parent(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

```
parent(Idril, Eärendil).
parent(Eärendil, Elros).
```
- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) :- \text{parent}(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

```
parent(Idril, Eärendil).
parent(Eärendil, Elros).
```
- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) - \text{parent}(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

```
parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil). (new!)
```
- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) :- parent(X, Z).
\text{ancestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

Facts:

parent(Idril, Eärendil). parent(Eärendil, Elros). ancestor(Idril, Eärendil).

- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{ancestor}(X, Z) - \text{parent}(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

Facts:

parent(Idril, Eärendil). parent (Eärendil, Elros). ancestor(Idril, Eärendil). ancestor(Eärendil, Elros). (new!)

- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{arcestor}(X, Z) :- parent(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

Facts:

parent(Idril, Eärendil). parent(Eärendil, Elros). ancestor(Idril, Eärendil). ancestor(Eärendil, Elros).

- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{arcestor}(X, Z) :- parent(X, Z).
\text{ancestor}(X, Z) - \text{parent}(X, Y), ancestor(Y,Z).
```
KORK ERKER ADE YOUR

Facts:

parent(Idril, Eärendil). parent(Eärendil, Elros). ancestor(Idril, Eärendil). ancestor(Eärendil, Elros). ancestor(Idril, Elros). (new!)

- 1. Pick a rule.
- 2. Find facts satisfying its premises.
- 3. Add its conclusion to the known facts.

Rules:

```
\text{arcestor}(X, Z) :- parent(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

Facts:

parent(Idril, Eärendil). parent(Eärendil, Elros). ancestor(Idril, Eärendil). ancestor(Eärendil, Elros). ancestor(Idril, Elros).

Repeatedly apply a set of rules until nothing changes

Repeatedly apply a **function** until nothing changes

Repeatedly apply a function until its output equals its input

Repeatedly apply a function until its output equals its input i.e. it reaches a fixed point

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Repeatedly apply a function until its output equals its input i.e. it reaches a fixed point

$$
fix x = ... function of x ...
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

```
// Datalog
\text{ancestor}(X, Z) :- parent(X, Z).
\text{arcestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
// Datafun fix ancestor $=$ parent \cup {(x,z) | (x,y) in parent , (y, z) in ancestor}

// Datalog $\text{ancestor}(X, Z)$:- parent (X, Z) . $\text{arcestor}(X, Z)$:- parent (X, Y) , ancestor (Y, Z) .

// Datafun fix ancestor $=$ parent \cup {(x,z) | (x,y) in parent , (y, z) in ancestor}

```
// Datalog
\text{ancestor}(X, Z) :- parent(X, Z).
\text{ancestor}(X, Z) :- parent(X, Y), ancestor(Y, Z).
```
KORK ERKER ADE YOUR

// Datafun fix ancestor $=$ parent ∪ $\{(x,z) | (x,y)$ in parent , (y, z) in ancestor}

 $X \longmapsto$ parent \cup {(x,z) | (x,y) in parent, (y,z) in X}

KORKA SERKER ORA

Where parent = $\{(ldril, Eărendil), (Eărendil, Elros)\}$ Steps:

 \emptyset

 $X \longmapsto$ parent \cup {(x,z) | (x,y) in parent, (y,z) in X}

KORK ERKER ADE YOUR

Where parent = $\{(ldril, Eărendil), (Eărendil, Elros)\}$ Steps:

\emptyset

 \mapsto parent \cup {(x,z) | (x,y) in parent, (y,z) in \emptyset }

 $X \longmapsto$ parent \cup {(x,z) | (x,y) in parent, (y,z) in X}

KORK ERKER ADE YOUR

Where parent = $\{(ldril, Eärendil), (Eärendil, Elros)\}$ Steps:

- \emptyset
- \mapsto parent \cup {(x,z) | (x,y) in parent, (y,z) in \emptyset }
	- $=$ parent

 $X \longmapsto$ parent $\bigcup \{ (x,z) | (x,y) \text{ in parent}, (y,z) \text{ in } X \}$

Where parent = $\{(ldril, Eärendil), (Eärendil, Elros)\}\$ Steps:

\emptyset

- \mapsto parent \cup {(x,z) | (x,y) in parent, (y,z) in \emptyset }
	- $=$ parent
- \rightarrow parent \cup {(x,z) | (x,y) in parent, (y,z) in parent}

 $X \longmapsto$ parent $\bigcup \{ (x,z) | (x,y) \text{ in parent}, (y,z) \text{ in } X \}$

Where parent = $\{(ldril, Eărendil), (Eărendil, Elros)\}$ Steps:

 \emptyset

- \mapsto parent \cup {(x,z) | (x,y) in parent, (y,z) in \emptyset }
	- $=$ parent
- \mapsto parent \cup {(x,z) | (x,y) in parent, (y,z) in parent}
	- $=$ {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}

But can it go fast?

K ロ X K 메 X K B X X B X X D X O Q Q O

1. What's a functional query language?

2. From Datalog to Datafun

3. Incremental Datafun

1. View maintenance:

How do we update a cached query efficiently after a mutation?

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

1. View maintenance:

How do we update a cached query efficiently after a mutation?

KORK ERKER ADE YOUR

2. Seminaïve evaluation in Datalog:

How do we avoid re-deducing facts we already know?

1. View maintenance:

How do we update a cached query efficiently after a mutation?

2. Seminaïve evaluation in Datalog:

How do we avoid re-deducing facts we already know?

3. Incremental computation:

How do we efficiently recompute a function as its inputs change?

1. View maintenance:

How do we update a cached query efficiently after a mutation?

2. Seminaïve evaluation in Datalog: How do we avoid re-deducing facts we already know?

3. Incremental computation:

How do we efficiently recompute a function as its inputs change?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

"A Theory of Changes for Higher-Order Languages: Incrementalizing λ -calculi by Static Differentiation" [PLDI 2014]

by Yufei Cai, Paolo G Giarrusso, Tillmann Rendel, and Klaus Ostermann

Every type A has a type of changes, ∆A.

イロト イ御 トイミト イミト ニミー りんぴ

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Every type also gets an operator $\bigoplus_{A}: A \to \Delta A \to A$.

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

Every type also gets an operator $\bigoplus_{A}: A \to \Delta A \to A$.

$$
x \oplus_{\mathbb{N}} dx = x + dx
$$

$$
(x, y) \oplus_{A \times B} (dx, dy) = (x \oplus_A dx, y \oplus_B dy)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

Every type also gets an operator $\bigoplus_{A}: A \to \Delta A \to A$.

$$
x \oplus_{\mathbb{N}} dx = x + dx
$$

(x, y)
$$
\oplus_{A \times B} (dx, dy) = (x \oplus_A dx, y \oplus_B dy)
$$

A function $f : A \to B$ gets a derivative, $\delta f : A \to \Delta A \to \Delta B$.

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

Every type also gets an operator $\bigoplus_{A}: A \to \Delta A \to A$.

$$
x \oplus_{\mathbb{N}} dx = x + dx
$$

(x, y)
$$
\oplus_{A \times B} (dx, dy) = (x \oplus_A dx, y \oplus_B dy)
$$

A function $f : A \rightarrow B$ gets a *derivative*, $\delta f : A \rightarrow \Delta A \rightarrow \Delta B$.

$$
f(x) = x2
$$

$$
\delta f(x)(dx) = 2x \cdot dx + dx2
$$

Every type A has a type of changes, ΔA .

$$
\Delta N = Z
$$

$$
\Delta(A \times B) = \Delta A \times \Delta B
$$

Every type also gets an operator $\bigoplus_{A}: A \to \Delta A \to A$.

$$
x \oplus_{\mathbb{N}} dx = x + dx
$$

$$
(x, y) \oplus_{A \times B} (dx, dy) = (x \oplus_A dx, y \oplus_B dy)
$$

A function $f : A \rightarrow B$ gets a *derivative*, $\delta f : A \rightarrow \Delta A \rightarrow \Delta B$.

$$
f(x) = x2
$$

\n
$$
\delta f(x)(dx) = 2x \cdot dx + dx2
$$

\n
$$
f(x) + \delta f(x)(dx) = x2 + 2x \cdot dx + dx2 = (x + dx)2
$$

We've extended this technique to handle all of Datafun!

(As of about three weeks ago.)

Finding fixed points faster with derivatives

The naïve way to find fixed points looks like this:

$$
\emptyset \mapsto f(\emptyset) \mapsto f^2(\emptyset) \mapsto f^3(\emptyset) \mapsto \dots
$$

K ロ X K (P) X (E) X (E) X (E) X (P) Q (P)

Finding fixed points faster with derivatives

The naïve way to find fixed points looks like this:

$$
\emptyset \mapsto f(\emptyset) \mapsto f^2(\emptyset) \mapsto f^3(\emptyset) \mapsto \dots
$$

 $f^{i}(\emptyset)$ and $f^{i+1}(\emptyset)$ overlap a lot.

Computing $f^{i+1}(\emptyset)$ from $f^i(\emptyset)$ does a lot of recomputation.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Finding fixed points faster with derivatives

The naïve way to find fixed points looks like this:

$$
\emptyset \mapsto f(\emptyset) \mapsto f^2(\emptyset) \mapsto f^3(\emptyset) \mapsto \dots
$$

 $f^{i}(\emptyset)$ and $f^{i+1}(\emptyset)$ overlap a lot.

Computing $f^{i+1}(\emptyset)$ from $f^i(\emptyset)$ does a lot of recomputation.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

What if we could only compute what changed between iterations?

$$
x_0 = \emptyset \qquad dx_0 = f(\emptyset) x_{i+1} = x_i \cup dx_i \qquad dx_{i+1} = \delta f(x_i)(dx_i)
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Theorem: $x_i = f^i(x)$

Takeaways

- 1. Set comprehensions $=$ queries
- 2. Fixed points $=$ recursive queries (like Datalog)
- 3. Incremental computation $=$ faster fixed points

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- 4. Datafun has all three!*
- * In theory.

Michael Arntzenius

daekharel@gmail.com @arntzenius

<rntz.net/datafun>

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어