
Datafun
a functional query language

Michael Arntzenius
daekharel@gmail.com

http://www.rntz.net/datafun

Strange Loop, September 2017
Recurse Center, March 2018

mailto:daekharel@gmail.com
http://www.rntz.net/datafun


Early stage work



What if programming languages
were more like query languages?



1. What’s a functional query language?

2. From Datalog to Datafun

3. Incremental Datafun



SQL

Parent Child
Arathorn Aragorn
Drogo Frodo
Eärwen Galadriel
Finarfin Galadriel

...
...

SELECT parent

FROM parentage

WHERE child = "Galadriel"



Tables as sets

Parent Child
Arathorn Aragorn
Drogo Frodo
Eärwen Galadriel
Finarfin Galadriel

...
...

=

// set of (parent, child) pairs
{(Arathorn, Aragorn)
, (Drogo, Frodo)
, (Eärwen, Galadriel)
, (Finarfin, Galadriel)

... }



Tuples and sets are just datatypes!

If tables are sets, what are queries?



Tuples and sets are just datatypes!

If tables are sets, what are queries?



Queries as set comprehensions

SELECT parent

FROM parentage

WHERE child = "Galadriel"

=⇒
{ parent | (parent, child) in parentage

, child = "Galadriel" }



Queries as set comprehensions

SELECT parent

FROM parentage

WHERE child = "Galadriel"

=⇒
{ parent | (parent, child) in parentage

, child = "Galadriel" }



Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child

FROM parentage A INNER JOIN parentage B

ON A.parent = B.parent

WHERE A.child <> B.child

=⇒
{ (a,b) | (parent, a) in parentage

, (parent, b) in parentage

, not (a = b) }



Queries as set comprehensions: finding siblings

SELECT DISTINCT A.child, B.child

FROM parentage A INNER JOIN parentage B

ON A.parent = B.parent

WHERE A.child <> B.child

=⇒
{ (a,b) | (parent, a) in parentage

, (parent, b) in parentage

, not (a = b) }



Recipe for a functional query language

1. Take a functional language

2. Add sets and set comprehensions

3. ... done?



But can it go fast?



Loop reordering

{ ... | x in EXPR1, y in EXPR2 }
=?

{ ... | y in EXPR2, x in EXPR1 }

1. Side-effects

2. Nontermination



Loop reordering

{ ... | x in EXPR1, y in EXPR2 }
6=

{ ... | y in EXPR2, x in EXPR1 }

1. Side-effects

2. Nontermination



Loop reordering

{ print x | x in {"hello"}, y in {0,1} }
6=

{ print x | y in {0,1}, x in {"hello"} }

1. Side-effects

2. Nontermination



Loop reordering

{ ... | x in {}, y in ∞-loop } =⇒ {}
6=

{ ... | y in ∞-loop, x in {} } =⇒ ∞-loop

1. Side-effects

2. Nontermination



Recipe for a functional query language, v2

1. Take a pure, total functional language

2. Add sets and set comprehensions

3. Optimize!



What have we gained?

I Can factor out repeated patterns with
higher-order functions

I Sets are just ordinary values

I Sets, bags, lists: choose your container semantics!

At what cost?

I Implementation complexity:
GC, closures, nested sets, optimizing comprehensions...

I Re-inventing the wheel:
persistence, transactions, replication...



What have we gained?

I Can factor out repeated patterns with
higher-order functions

I Sets are just ordinary values

I Sets, bags, lists: choose your container semantics!

At what cost?

I Implementation complexity:
GC, closures, nested sets, optimizing comprehensions...

I Re-inventing the wheel:
persistence, transactions, replication...



1. What’s a functional query language?

2. From Datalog to Datafun

3. Incremental Datafun



Parent Child
Arathorn Aragorn
Drogo Frodo
Eärwen Galadriel
Finarfin Galadriel

...
...

Is Eärendil one of Aragorn’s ancestors?



Datalog in a nutshell

X is Z ’s ancestor if X is Z ’s parent.

X is Z ’s ancestor if X is Y ’s parent and Y is Z ’s ancestor.



Datalog in a nutshell

ancestor(X ,Z ) if parent(X , Z ).

ancestor(X , Z ) if parent(X , Y ) and ancestor(Y , Z ).



Datalog in a nutshell

ancestor(X ,Z ) :- parent(X , Z ).

ancestor(X , Z ) :- parent(X , Y ), ancestor(Y , Z ).



Datalog is deductive: it chases rules to their
logical conclusions.

Can we capture this feature functionally?



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).

ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).

ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).

ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil). (new!)

ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil).

ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros). (new!)

ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).

ancestor(Idril, Elros).



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).
ancestor(Idril, Elros). (new!)



Procedure:

1. Pick a rule.
2. Find facts satisfying its premises.
3. Add its conclusion to the known facts.

Rules:

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

Facts:

parent(Idril, Eärendil).
parent(Eärendil, Elros).
ancestor(Idril, Eärendil).
ancestor(Eärendil, Elros).
ancestor(Idril, Elros).



Repeatedly apply a set of rules
until nothing changes

i.e. it reaches a fixed point

fix x = ... function of x ...



Repeatedly apply a function
until nothing changes

i.e. it reaches a fixed point

fix x = ... function of x ...



Repeatedly apply a function
until its output equals its input

i.e. it reaches a fixed point

fix x = ... function of x ...



Repeatedly apply a function
until its output equals its input
i.e. it reaches a fixed point

fix x = ... function of x ...



Repeatedly apply a function
until its output equals its input
i.e. it reaches a fixed point

fix x = ... function of x ...



// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

∪ {(x,z) | (x,y) in parent
, (y,z) in ancestor}



// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

∪ {(x,z) | (x,y) in parent
, (y,z) in ancestor}



// Datalog
ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

// Datafun
fix ancestor = parent

∪ {(x,z) | (x,y) in parent
, (y,z) in ancestor}



Repeatedly applying:

X 7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Eärendil), (Eärendil, Elros)}
Steps:

∅

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in ∅}
= parent

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in parent}
= {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}



Repeatedly applying:

X 7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Eärendil), (Eärendil, Elros)}
Steps:

∅
7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in ∅}

= parent

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in parent}
= {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}



Repeatedly applying:

X 7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Eärendil), (Eärendil, Elros)}
Steps:

∅
7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in ∅}

= parent

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in parent}
= {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}



Repeatedly applying:

X 7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Eärendil), (Eärendil, Elros)}
Steps:

∅
7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in ∅}

= parent

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in parent}

= {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}



Repeatedly applying:

X 7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in X}

Where parent = {(Idril, Eärendil), (Eärendil, Elros)}
Steps:

∅
7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in ∅}

= parent

7−→ parent ∪ {(x,z) | (x,y) in parent, (y,z) in parent}
= {(Idril, Eärendil), (Eärendil, Elros), (Idril, Elros)}



But can it go fast?



1. What’s a functional query language?

2. From Datalog to Datafun

3. Incremental Datafun



Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminäıve evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs

change?



Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminäıve evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs

change?



Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminäıve evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs

change?



Three problems

1. View maintenance:
How do we update a cached query efficiently after a mutation?

2. Seminäıve evaluation in Datalog:
How do we avoid re-deducing facts we already know?

3. Incremental computation:
How do we efficiently recompute a function as its inputs

change?



“A Theory of Changes for Higher-Order Languages:
Incrementalizing λ-calculi by Static Differentiation”
[PLDI 2014]

by Yufei Cai, Paolo G Giarrusso, Tillmann Rendel, and Klaus Ostermann



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



Static differentiation

Every type A has a type of changes, ∆A.

∆N = Z
∆(A× B) = ∆A×∆B

Every type also gets an operator ⊕A : A→ ∆A→ A.

x ⊕N dx = x + dx

(x , y)⊕A×B (dx , dy) = (x ⊕A dx , y ⊕B dy)

A function f : A→ B gets a derivative, δf : A→ ∆A→ ∆B .

f (x) = x2

δf (x)(dx) = 2x · dx + dx2

f (x) + δf (x)(dx) = x2 + 2x · dx + dx2 = (x + dx)2



We’ve extended this technique
to handle all of Datafun!

(As of about three weeks ago.)



Finding fixed points faster with derivatives

The näıve way to find fixed points looks like this:

∅ 7→ f (∅) 7→ f 2(∅) 7→ f 3(∅) 7→ ...

f i(∅) and f i+1(∅) overlap a lot.

Computing f i+1(∅) from f i(∅) does a lot of recomputation.

What if we could only compute what changed between
iterations?



Finding fixed points faster with derivatives

The näıve way to find fixed points looks like this:

∅ 7→ f (∅) 7→ f 2(∅) 7→ f 3(∅) 7→ ...

f i(∅) and f i+1(∅) overlap a lot.

Computing f i+1(∅) from f i(∅) does a lot of recomputation.

What if we could only compute what changed between
iterations?



Finding fixed points faster with derivatives

The näıve way to find fixed points looks like this:

∅ 7→ f (∅) 7→ f 2(∅) 7→ f 3(∅) 7→ ...

f i(∅) and f i+1(∅) overlap a lot.

Computing f i+1(∅) from f i(∅) does a lot of recomputation.

What if we could only compute what changed between
iterations?



x0 = ∅ dx0 = f (∅)
xi+1 = xi ∪ dxi dxi+1 = δf (xi)(dxi)

Theorem: xi = f i(x)



Takeaways

1. Set comprehensions = queries

2. Fixed points = recursive queries (like Datalog)

3. Incremental computation = faster fixed points

4. Datafun has all three!*

* In theory.



Michael Arntzenius
daekharel@gmail.com
@arntzenius

rntz.net/datafun

mailto:daekharel@gmail.com
rntz.net/datafun

