
Tones and Types
Michael Arntzenius, daekharel@gmail.com
18 January 2019

Abstract. Certain properties of maps between preorders (e.g. preserving equiva-
lence) reduce to monotonicity with respect to an altered domain ordering. I dub such
alterations “tones”, and explore their theory. I sketch a typed λ-calculus of monotone
functions, using tones to allow selective non-monotonicity.

1 Preorders

A preorder is a relation a 6 b satisfying:

1. Reflexivity: a 6 a.

2. Transitivity: If a 6 b and b 6 c then a 6 c.

Preorders generalize partial orders by not requiring antisymmetry. Let a ≡ b iff
a 6 b and b 6 a. Antisymmetry means a ≡ b implies a = b. A good example
preorder is “lists under containment”, where a 6 b iff every element of a is also in
b. Note that [0, 1] ≡ [1, 0], but [0, 1] 6= [1, 0].

To a category theorist, a preorder is a “thin” category: between any two objects
there is at most one morphism. I suspect much of the “tone theory” in this document,
ostensibly about maps between preorders, extends to functors between categories.

2 Tones

Tones are ways a function f may respect a preorder. I will consider four tones: id, op,
� (pronounced “iso”), and ♦ (pronounced “path”).

Tone Name Property of f

id Monotone x 6 y =⇒ f(x) 6 f(y)
op Antitone x > y =⇒ f(x) 6 f(y)
� Invariant x 6 y∧ y 6 x =⇒ f(x) 6 f(y)
♦ Bivariant x 6 y∨ y 6 x =⇒ f(x) 6 f(y)

Informally,

1. id is monotone (order-preserving).

2. op is antitone (order-inverting).

3. � is invariant, preserving only equivalence.

4. ♦ is bivariant: both monotone and antitone.

1

mailto:daekharel@gmail.com

2.1 Tones transform orders

Fix preorders A,B. Let opA be A, ordered oppositely. Now, observe that

f : A→ B is antitone
iff

f : opA→ B is monotone

So “antitone” is a special case of “monotone”! This observation generalizes: every
tone is really monotonicity with a transformation applied to the domain’s ordering.
So tones transform orders. I write TA for the preorder A transformed by the tone
T , defined:

Tone Meaning Transformation on A

id same ordering a 6 b : A ⇐⇒ a 6 b : idA
op opposite ordering a > b : A ⇐⇒ a 6 b : opA
� induced equivalence a 6 b∧ b 6 a : A ⇐⇒ a 6 b : �A
♦ equivalence closure a 6 b∨ b 6 a : A =⇒ a 6 b : ♦A

With this, we can state the theorem generalizing our observation:

Theorem 1 (Tones transform orders).

f : A→ B has tone T
iff

f : TA→ B is monotone

From this point on, when I write f : A→ B, I mean implicitly that f is monotone;
and therefore f : TA → B means that f has tone s. Here are a few more useful
properties of tones, which I invite you to verify:

Theorem 2 (Functoriality of tones). If f : A→ B then f : TA→ TB.

Theorem 3 (Tones distribute over× and +). T(A×B) = TA× TB and T(A+B) =

TA+TB, whereA×B andA+B are the product and coproduct preorders respectively.

2.2 Understanding tone transformations

Figure 1 illustrates how each tone transforms the graph of a simple preorder: idA
is identical to A; opA inverts arrows’ directions; �A isolates the strongly connected
components of A; and ♦A makes weakly connected components strong. Arrows in
�A and ♦A are always bidirectional, as their preorders are symmetric (and thus
equivalence relations).
♦A is a symmetric, transitive closure, the smallest preorder such that a 6 b∨b 6

a : A implies a 6 b : ♦A. Unlike every other tones’ definition, this implication is not
reversible. In figure 1, for example, a 6 c : ♦A, but a 66 c∧ c 66 a : A.

2

a

b

c e

d

A = idA

a

b

c e

d

opA

a

b

c e

d

�A

a

b

c e

d

♦A

Figure 1. Tones applied to an example preorder

♦

�

id op

T ∧U id ♦ op �
id id id � �
♦ id ♦ op �
op � op op �
� � � � �

UT
T

id op � ♦

U

id id op � ♦
op op id � ♦
� � � � ♦
♦ ♦ ♦ � ♦

Figure 2. Tone lattice, meet, and composition

2.3 Tone operators

Figure 2 defines two operators on tones:

1. Meet T ∧U is the greatest lower bound in the lattice ordered� < {id, op} < ♦.
This finds the tone of the pairing 〈f,g〉 : (T ∧U)A→ B× C of two functions
f : TA→ B and g : UA→ C.

2. Composition UT gives the tone of a composed function g◦ f : UTA→ C when
f : TA→ B and g : UB→ C. Equivalently, (UT)A = U(TA) for any preorder
A.

I sometimes write TU as T ◦U for clarity. Composition binds tighter than meet,
so TU∧ V = (T ◦U)∧ V . Together, ∧ and ◦ form a semiring whose properties are
given in figure 3.

3 Semantics of tones

Let’s change perspective. Section 2 defines tones as function properties, then gives
corresponding preorder transformations. Now, let’s define tones as preorder transfor-
mations, and derive corresponding function properties.

Definition 4. |−| : preord → set is the functor taking a preorder to its set of
elements.

3

Properties of ∧

Associativity (T ∧U)∧ V = T ∧ (U∧ V)

Commutativity T ∧U = U∧ T

Idempotence T ∧ T = T

♦ is identity ♦∧ T = T

� absorbs �∧ T = �

Properties of ◦
Associativity (TU)V = T(UV)

Identity id ◦ T = T = T ◦ id
♦ right-absorbs T♦ = ♦
� right-absorbs T� = �
op involutive op ◦ op = id

Left distribution T(U∧ V) = TU∧ TV

Right distribution (T ∧U)V = TV ∧UV

Figure 3. Properties of tone operators

Definition 5 (Tones). A tone is a functor T : preord → preord such that |T−| =

|−|.1 That is, for any preorder A and monotone map f,

1. |TA| = |A|: tones alter a preorder’s ordering, not its elements.

2. |Tf| = |f|: tones do not alter functions’ behavior.

Theorem 6. Tones are closed under functor composition.

Proof. Applying definition 5, we have |U(T−)| = |T−| = |−|.

3.1 The tone lattice

Preorders have a natural subpreorder relationship, A 6 B, given by:

A 6 B ⇐⇒ 6A ⊆ 6B
⇐⇒ λx. x : A→ B

⇐⇒ A ⊆ B∧ ∀(x,y) x 6 y : A =⇒ x 6 y : B

This lifts pointwise to a partial order on tones:

T 6 U ⇐⇒ (∀A) TA 6 UA

Theorem 7. Preorders over a set A form a lattice.

Proof. Let P,Q,R ⊆ A×A stand for preorder relations on A. Let S∗ be the transitive
closure of S. Then our preorder lattice is given by:

P ∧Q = P ∩Q ⊥ = {(x, x) | x ∈ A}
P ∨Q = (P ∪Q)∗ > = A×A

1 A more categorical approach might require only a natural isomorphism ι : |T−| ' |−|. I’m not yet
comfortable generalizing that far.

4

By construction, ⊥ is the least preorder; > the greatest; P ∧Q the greatest lower
bound of P,Q; and P ∨ Q their least upper bound (as the least transitive relation
such that P ∪Q ⊆ P ∨Q).2

Theorem 8. Tones form a lattice.3

Proof. Since tones are ordered pointwise, they inherit the lattice on preorders from
theorem 7, so long as the lattice operations are functorial. Restating their definitions
in logical notation, given tones T ,U, the tone functors⊥,>, T∧U, and T∨U construct
the smallest preorders satisfying:

x 6 y : ⊥A ⇐⇒ x = y

x 6 y : >A ⇐⇒ >
x 6 y : (T ∧U)A ⇐⇒ x 6 y : TA∧ x 6 y : UA

x 6 y : (T ∨U)A ⇐= x 6 y : TA∨ x 6 y : UA

⊥ and > are functorial because all maps ⊥A→ ⊥B or >A→ >B are monotone.
T ∧ U is functorial by functoriality of T , U, and ∧. T ∨ U is functorial as follows:
Suppose f : A → B. We wish to show f : (T ∨ U)A → (T ∨ U)B. Suppose x 6 y :

(T ∨U)A. Since (T ∨U)A is a transitive closure, there exists a path x0, ..., xn such
that x0 = x, xn = y, and xi 6 xi+1 : TA ∨ xi 6 xi+1 : UA. Fix i. Without loss of
generality, let xi 6 xi+1 : TA. Then f(xi) 6 f(xi+1) : TA by functoriality of T . Thus
f(xi) 6 f(xi+1) : (T ∨U)A. By transitivity f(x) 6 f(y) : (T ∨U)A.

Conjecture 9. The syntactic definitions of ∧ and ◦ in figure 2 agree with their
semantic counterparts when applied to id, op, ♦, and �.

3.2 The tone category

Let tone be the category whose objects are tones and whose morphisms are natural
transformations. tone is isomorphic to the tone lattice:

Theorem 10. The following are equivalent:

T 6 U ⇐⇒ ∃η : tone(T ,U) ⇐⇒ ∃!η : tone(T ,U)

Proof. Expanding definitions, T 6 U means λx. x : TA → UA for all A : preord.
By lemma 11, any η : tone(T ,U) is of the form ηA = λx. x : TA→ UA.

The crux here is that natural transformations between tones are boring:

2 Interestingly, this lattice is not distributive. Let A = {1, 2, 3, 4} and consider the preorders P = {1 <
2 < 4},Q = {1 < 3}, and R = {3 < 4}. Then P∧ (Q∨R) = {1 < 4} but (P∧Q)∨ (P∧R) is
discrete. TODO: is there a counterexample for the other distributive law?

3 Since the preorder lattice is not distributive, I expect that the tone lattice isn’t either, but have yet to find a
counterexample.

5

Lemma 11. For any natural transformation η : T → U, we have ηA = λx. x.

Proof. Let 1 be the singleton preorder {?}. Fix some x : A. Let f : 1 → A = λ?. x.
Then by naturality of η, this square commutes:

1 1

TA UA

η1

Tf Uf

ηA

From definition 5, Tf = f = Uf; and since 1 is a singleton, η1 = id, thus:

ηA ◦ Tf = Uf ◦ η1
=⇒ ηA ◦ f = f

=⇒ ηA(x) = x

4 An aside on overline notation

An overlined and superscripted meta-expression Φ(i)
i
represents a sequence (of

unspecified length) indexed by i. The index i clarifies which bits are repeated with
variation, and which without. For example:

xi : Ai
i

stands for x1 : A1, x2 : A2, ..., xn : An

xi : A
i

stands for x1 : A, x2 : A, ..., xn : A

This resembles the usual notation for sums of sequences, but with the bounds left
implicit. For example,

∑
i xiy

i can be written
∑
xiyi

i
if we take

∑
to be a function

from sequences of numbers to numbers.⁴

5 A bidirectional λ-calculus with tone inference

Figure 4 gives rules⁵ for a tonal sequent calculus with a type TA representing the tone
functor T applied to the type A. I adapt this into a tonal λ-calculus with bidirectional
type inference. I give its syntax in figure 5 and its typing judgment forms in figure 6.
TODO: explain my various abuses of notation, e.g. TΓ and Γ1 ∧ Γ2.

⁴ This convention is inspired by Guy Steele’s talk on Computer Science Metanotation. There are videos of
the talk at Clojure/conj 2017, PPoPP 2017, and Harvard University. There are also slides from Code Mesh
2017.

⁵ Sent to me by Jason Reed.

6

https://www.youtube.com/watch?v=dCuZkaaou0Q
https://www.youtube.com/watch?v=7HKbjYqqPPQ
https://www.youtube.com/watch?v=8fCfkGFF7X8&feature=youtu.be&t=37m46s
http://s3.amazonaws.com/erlang-conferences-production/media/files/000/000/755/original/Guy_L._Steele_-_A_Cobbler's_Child.pdf?1510053539
http://s3.amazonaws.com/erlang-conferences-production/media/files/000/000/755/original/Guy_L._Steele_-_A_Cobbler's_Child.pdf?1510053539

T [Ui]Ai
i
= [TUi]Ai

i

Hypothesis
T 6 id

Γ , [T]A ` A

T -Right
Γ ` A
TΓ ` TA

T -Left
Γ , [TU]A ` C
Γ , [T]UA ` C

Weakening
U 6 T Γ , [T]A ` C

Γ , [U]A ` C

Contraction
Γ , [T]A, [U]A ` C
Γ , [T ∧U]A ` C

Cut
Γ ` A ∆, [T]A ` C

TΓ , ∆ ` C

Figure 4. Tonal sequent calculus

variables x

base types P

tones T ,U,V ::= id | op | ♦ | �

cartesian ops ~ ::= + | ×
types A,B,C ::= P | �A | opA | A→ B | A~ B

inferred terms e ::= x | e m | πi e | m : A

checked terms m,n ::= e | λx.m | (m,n) | inim
let x = e inm
case e of ini x � mi

i

contexts Γ ::= ε | Γ , x : [T]A

Figure 5. Syntax for the bidirectional tonal λ-calculus

Type Checking
m⇐ Γ ` A

Type Inference
m⇒ Γ ` A

Tone Adjunction
T a U

Subtoning
T 6 U

Subtyping
[T]A 6 B

Mode Stripping
[T]A ≺ B

Figure 6. Typing judgments for the tonal λ-calculus

7

5.1 Typing rules

Inferred forms

m⇐ Γ ` A
m : A⇒ Γ ` A x⇒ x : [id]A ` A

e⇒ Γ ` A [T]A ≺ B1 × B2

πi e⇒ TΓ ` Bi

e⇒ Γ1 ` A [T]A ≺ B→ C m⇐ Γ2 ` B
e m⇒ TΓ1 ∧ Γ2 ` C

Checking forms

e⇒ Γ ` A [T]A 6 B

e⇐ TΓ ` B
m⇐ Γ ` A T ∈ {�, op}

m⇐ TΓ ` TA

e⇒ Γ1 ` A m⇐ Γ2, x : [T]A ` C
let x = e inm⇐ TΓ1 ∧ Γ2 ` C

m⇐ Γ , x : [T]A ` B id 6 T

λx.m⇐ Γ ` A→ B

m⇐ Γ1 ` A1 n⇐ Γ2 ` A2

(m,n)⇐ Γ1 ∧ Γ2 ` A1 ×A2

m⇐ Γ ` Ai
inim⇐ Γ ` A1 +A2

e⇒ Γ ` A [T]A ≺ B1 + B2 (∀i) mi ⇐ Γi, x : [Ui]Bi ` C

case e of ini x � mi
i ⇐

∧
i (UiTΓ ∧ Γi) ` C

5.2 Tone judgments

TODO: Explain judgment s 6 t, for tone ordering, and s a t, for tone adjunction.

id a id op a op ♦ a � T 6 T � 6 T T 6 ♦

5.3 Subtyping

TODO: Explain why we use tone-annotated subtyping.
TODO: Explain the intended algorithmic reading here. Note that we case-analyse

both A and B, and argue that the order we apply the rules in shouldn’t matter. Even-
tually I’ll want to prove soundness (wrt semantics) & completeness (wrt some more
declarative system).

In [T]A 6 B, the types A and B are inputs, and the tone T is output. In each rule

8

I’ve marked the connective being analysed in pink.

refl
[id]A 6 A

t-right
[T]A 6 B

[UT]A 6 UB

t-left
[T]A 6 B U a V

[TU]VA 6 B

cartesian distribution
[T]A1 6 A2 [U]B1 6 B2

[T ∧U]A1~B1 6 A2~B2

The semantic justification for t-left is as follows. Note that λx. x : VA→ VA.
Applying U a V we have λx. x : UVA → A, thus UVA 6 A, and so finally
TUVA 6 TA 6 B. Clean up this explanation. Explain that we use adjunction rather
than st 6 id directly because adjunction gives us the most informative result; st 6 id
is declarative, t a s is algorithmic. Give explanations for each other rule as well.

Function subtyping, [T]A1 → B1 6 A2 → B2, has four rules, one for each tone T
produced by [T]B1 6 B2:

id 6 T [T]A2 6 A1 [id]B1 6 B2

[id]A1 → B1 6 A2 → B2

op 6 T [T]A2 6 A1 [op]B1 6 B2

[op]A1 → B1 6 A2 → B2

♦T = ♦ [T]A2 6 A1 [♦]B1 6 B2

[♦]A1 → B1 6 A2 → B2

[♦]A2 6 A1 [�]B1 6 B2

[�]A1 → B1 6 A2 → B2

The premise ♦T = ♦ of the third rule holds for T 6= � in our system; however,
♦T = ♦ captures more exactly why the rule is valid. TODO: Give proofs each of these
rules are valid.

Are there also more precise/suggestive versions of the other premises? Can the
U 6 T constraints be turned into “composing with V is > id”, for some choice of V
depending on U? Or, a hypothetical generalization of three of those rules:

U a T U 6 V [V]A2 6 A1 [T]B1 6 B2

[T]A1 → B1 6 A2 → B2

Subtyping at base types will depend on the base types you choose. Frequently,
some base types’ preorders will be symmetric (or even discrete, x 6 y ⇐⇒ x = y),
and therefore equivalence relations. Let “P equiv” hold if P’s order is symmetric. Then
the following refinement of refl is useful:

P equiv

[♦]P 6 P

9

5.4 Mode stripping

[T]A ≺ B is a specialization of [T]A 6 B which strips off modal operators on A,
turning them into transformations on T . As in subtyping, A is an input and T an
output; however, B is now an output.

(∀T ,B) A 6= TB
[id]A ≺ A

[T]A ≺ B U a V
[TU]VA ≺ B

TODO: note that we cannot strip the mode ♦. ♦ is basically a pariah; we cannot
eliminate it through mode stripping, and we don’t have an explicit elimination rule.

5.5 Tones and the λ rule

Here are two more general variations on the λ rule I’ve considered:

Fn-1
m⇐ Γ , x : [T]A ` B A 6 [T]A

λx.m⇐ Γ ` A→ B

Fn-2
m⇐ Γ , x : [U]A ` B [T]A 6 A id 6 TU

λx.m⇐ Γ ` A→ B

Fn-1 requires a new judgment, A 6 [T]B, where A,B, T are all inputs; this doesn’t
seem difficult to define, but it’s Yet Another Subtyping Judgment. Fn-2 avoids this,
but is much less easy to explain.

However, it’s not clear to me I need to generalize the λ rule. The reason I thought
I did was to justify something like the following:

...

Γ , x : [�]A ` m : B

Γ ` λx.m : �A→ B

But this could check as follows:

...

m⇐ Γ , x : [T] (�A) ` B id 6 T

λx.m⇐ Γ ` �A→ B

So the crucial question is: can we always substitute x : [id]�A for x : [�]A? It
would suffice to prove the subtyping and substitution principles given in section 8.1.
Can we prove these with our original, subtyping-less λ rule?

10

6 Pattern matching

patterns p,q ::= x | (p,q) | ini p

checking terms m,n ::= case e of pi � mii

toneless contexts φ,ψ ::= ε | φ, x : A

judgments J ::= A ≡ B~ C
p : A ` φ
p � m⇐ [T]A; Γ ` C

The types in toneless contexts φ aren’t annotated with tones. TODO: Explain why
and when we use toneless contexts. Explain

#„

T φ notation for a context split into its
tones and its types.

6.1 Distributing modes

The pattern (x,y) matches values of type A× B. But how shall we match values of
type T(A×B)? Well, Theorem 3 says T(A×B) ' TA×TB. So (x,y) can alsomatch
T(A × B), yielding x : TA and y : TB. To type-check this, we’ll need a judgment
A ≡ B~ C for distributing modes over a cartesian operator ~ (either × or +). Here
A is an input and B, C are outputs.

A~ B ≡ A~ B
A ≡ B~ C

TA ≡ TB~ TC

6.2 Typing patterns

The judgment p : A ` φ corresponds to a preord-morphism A→ 1+ φ. It means
that the pattern p, when it matches a value of typeA, produces values forφ’s variables.

x : A ` x : A
A ≡ A1 +A2 p : Ai ` φ

ini p : A ` φ

A ≡ A1 ×A2 (∀i) pi : Ai ` φi φ1,φ2 disjoint

(p1,p2) : A ` φ1,φ2

6.3 Typing case-analysis

Typing case as a single rule is complicated:

e⇒ Γ ` A (∀i) pi : A ` φi (∀i) mi ⇐ Γi,
#„

Tiφi ` C

case e of pi � mii ⇐
∧
i

(
Γi ∧

∧
#„

TiΓ
)
` A

11

We can split this up using a helper judgment, p � m ⇐ [T]A; Γ ` C, corre-
sponding to a morphism TA× Γ → 1+ C. This says that the arm p � m matches a
scrutinee of type A that it uses at tone T , along with variables in Γ , to produce (if it
matches) a result of type C. Then we have:

p : A ` φ m⇐ Γ ,
#„

T φ ` C

p � m⇐
[∧ #„

T
]
A; Γ ` C

e⇒ Γ ` A (∀i) pi � mi ⇐ [Ti]A; Γi ` C

case e of pi � mii ⇐
∧
i

(TiΓ ∧ Γi) ` C

6.4 Why do we need both stripping and distribution?

Can we also use modal distribution instead of modal stripping in our typing rules for
expressions? Not quite. We can rewrite the tuple-projection rule:

e⇒ Γ ` A A ≡ A1 ×A2

πi e⇒ Γ ` Ai

However, we cannot rewrite function application (shown below) this way; in
general, T(A→ B) 6≡ TA→ TB. (In particular for T ∈ {�,♦}.) So it seems there is
no choice but to use subtyping.

e⇒ Γ1 ` A [T]A ≺ B→ C m⇐ Γ2 ` B
e m⇒ TΓ1 ∧ Γ2 ` C

TODO: explain why using modal stripping for pattern matching doesn’t work,
with the (x, (y, z)) versus A×�(B× C) example.

TODO: explain why using modal stripping rather than distribution for the tuple
projection rule is fine, because of the adjunction between ♦ and �.

6.5 Case analysis with guarded arms

checking expressions m ::= case e of pi if mi � ni
i

judgments J ::= p if m � n⇐ [T]A; Γ ` C

p : A ` φ m⇐ Γ1,
#„

T φ ` �2 n⇐ Γ2,
#„

Uφ ` C

p if m � n⇐
[∧ #„

T ∧
∧ #„

U
]
A; Γ ` C

e⇒ Γ ` A (∀i) pi if mi � ni ⇐ [Ti]A; Γi ` C

case e of pi if mi � ni
i ⇐

∧
i (TiΓ ∧ Γi) ` C

12

6.6 Patterns with embedded guards

patterns p,q ::= p if m

judgments J ::= p : [T]A ` Γ ` φ

Now that patterns can contain expressions, our pattern typing judgment takes
an input context Γ , becoming p : [T]A ` Γ ` φ. This corresponds to a morphism
Γ × TA → 1 + φ. However, at this point our rules get so complicated I don’t trust
them without a proof:

x 6∈ φ
x : [id]A ` #„

♦φ ` x : A
A ≡ A1 +A2 p : [T]Ai ` Γ ` φ

ini p : [T]A ` Γ ` φ

A ≡ B× C p : [T]B ` Γ1 ` φ q : [U]C ` Γ2,
#„

Vφ ` ψ

(p,q) :
[(

id∧
∧ #„

V
)
T ∧U

]
A ` id∧

∧ #„

VΓ1 ∧ Γ2 ` φ,ψ

p : [T]A ` Γ1 ` φ m⇐ Γ2,
#„

Uφ ` �2

p if m :
[
T ∧ ♦

∧ #„

UT
]
A ` id∧ ♦

∧ #„

UΓ1 ∧ ♦Γ2 ` φ

Now we update the rules for p � m ⇐ [T]A; Γ ` C to pass through Γ to the
pattern:

p : [T]A ` Γ1 ` φ m⇐ Γ2,
#„

Uφ ` C

p � m⇐ [T]A;
∧

#„

UΓ1 ∧ Γ2 ` C

7 Declarative rules

This is where I’m stashing important inference rules, stated in a way that makes them
obviously valid, but leaves non-obvious how to algorithmically check them.

7.1 Subtyping and type equivalence

Type equivalenceA ≡ B is a synonym forA 6 B∧B 6 A. LetA 6 B be the preorder
generated by:

T 6 U

TA 6 UA

A 6 B

TA 6 TB
T(UA) ≡ (TU)A T(A~ B) ≡ TA~ TB

op (A→ B) ≡ opA→ opB A→ �B ≡ �(A→ �B)

�(A→ B) 6 �A→ �B
A1 6 B1 A2 6 B2

A1 ~A2 6 B1 ~ B2

A2 6 A1 B1 6 B2

A1 → B1 6 A2 → B2

13

Conjecture 12. This judgment is complete for subpreordering relationships of the
form TA 6 B where ♦ does not occur in A or B (but may occur in T).

TODO: checkwe can derive the algorithmic function subtyping rules.�(A→ B) 6
�A→ �B handles one of the cases; op (A→ B) ≡ opA→ opB handles another;
what about the last one?

As I originally conceived of this system, there was no type ♦A internalizing the ♦
tone, so I imagine it’s not complete for types of that form. In fact, there are no rules
above about ♦ specifically.

Here are some more valid rules, but do I need them?

idA ≡ A
T ,U ∈ {�,♦}

A→ UB ≡ T(A→ UB)

T ∈ {�,♦} U a V
T(UA→ B) ≡ T(A→ VB)

8 Metatheory

8.1 Weakening, subtyping, and substitution

We wish to prove admissible the following rules:

tone weakening
m⇐ Γ ` A

m⇐ Γ ∧ Γ ′ ` A

subtyping left
m⇐ Γ , x : [T]A ` C TA 6 UB

m⇐ Γ , x : [U]B ` C

subtyping right
m⇐ Γ ` A TA 6 B

m⇐ TΓ ` B

substitution
e⇒ Γ1 ` A TA 6 UB m⇐ Γ2, x : [U]B ` C

m[e/x]⇐ TΓ1 ∧ Γ2 ` C

TODO: Doesn’t tone weakening follow from subtyping left?

14

	Preorders
	Tones
	Tones transform orders
	Understanding tone transformations
	Tone operators

	Semantics of tones
	The tone lattice
	The tone category

	An aside on overline notation
	A bidirectional lambda-calculus with tone inference
	Typing rules
	Inferred forms
	Checking forms

	Tone judgments
	Subtyping
	Mode stripping
	Tones and the lambda rule

	Pattern matching
	Distributing modes
	Typing patterns
	Typing case-analysis
	Why do we need both stripping and distribution?
	Case analysis with guarded arms
	Patterns with embedded guards

	Declarative rules
	Subtyping and type equivalence

	Metatheory
	Weakening, subtyping, and substitution

